International Journal of Hydrogen Energy, vol.47, no.24, pp.12136-12146, 2022 (SCI-Expanded)
© 2021 Hydrogen Energy Publications LLCIn this study, hydrogen evolution electrodes are prepared by a 3D printing method using conductive PLA filament. To improve their conductivity and electrochemical performance, Nickel–Copper (NiCu) binary coating is deposited on 3D printed (3DP) electrodes in a solution bath with different volume ratios. Electrodes have been prepared as NixCux, NixCu2x, and NixCu3x according to Ni and Cu volume ratio (Ni–Cu; 10-10, 10–20, and 10–30 mL, respectively). Surface morphologies of the samples are measured using FE-SEM, EDX and XRD techniques. Electrochemical characterizations are investigated by LSV, CV and EIS. According to the results, the current density of NiCu coated 3DP electrodes is higher than the uncoated 3DP electrode. The results show that the resistance values of the electrodes are decreased from 0.262 kΩ to 0.187 kΩ in NixCu3x electrode.