A fractional-order mathematical model based on vaccinated and infected compartments of SARS-CoV-2 with a real case study during the last stages of the epidemiological event


Bilgil H., Yousef A., Erciyes A., Erdinc U., Ozturk Z.

JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, vol.425, 2023 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 425
  • Publication Date: 2023
  • Doi Number: 10.1016/j.cam.2022.115015
  • Journal Name: JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Applied Science & Technology Source, Communication Abstracts, Computer & Applied Sciences, INSPEC, MathSciNet, Metadex, zbMATH, DIALNET, Civil Engineering Abstracts
  • Keywords: SARS-CoV-2, Caputo fractional derivative, Stability, Vaccine, EQUATIONS
  • Kayseri University Affiliated: No

Abstract

In 2020 the world faced with a pandemic spread that affected almost everything of humans' social and health life. Regulations to decrease the epidemiological spread and studies to produce the vaccine of SARS-CoV-2 were on one side a hope to return back to the regular life, but on the other side there were also notable criticism about the vaccines itself. In this study, we established a fractional order differential equations system incorporating the vaccinated and re-infected compartments to a SIR frame to consider the expanded and detailed form as an SVIIvR model. We considered in the model some essential parameters, such as the protection rate of the vaccines, the vaccination rate, and the vaccine's lost efficacy after a certain period. We obtained the local stability of the disease-free and co-existing equilibrium points under specific conditions using the Routh-Hurwitz Criterion and the global stability in using a suitable Lyapunov function. For the numerical solutions we applied the Euler's method. The data for the simulations were taken from the World Health Organization (WHO) to illustrate numerically some scenarios that happened.(c) 2022 Elsevier B.V. All rights reserved.