DÜMF Mühendislik Dergisi, vol.13, no.2, pp.161-167, 2022 (Peer-Reviewed Journal)
1950’lerden itibaren Türkiye’de sanayileşmenin hız kazanmasıyla birlikte özellikle büyük kentlerde ciddi bir işgücü talebi oluşmuş ve dolayısıyla hızlı bir iç göç hareketi ortaya çıkmıştır. Göç hareketinin sonucunda büyük şehirlerde düzensiz büyüme ve yerleşme faaliyeti başlamıştır. Düzensiz olan bu yerleşme neticesinde başta altyapı sorunları olmak üzere birçok sorun ortaya çıkmıştır. Bu sorunların çözümünde kentsel dönüşüm projeleri önemli bir yer edinmektedir. Kentsel dönüşüm projeleri alan ilanı ile başlayıp vatandaşın tapu devrini yapılmasıyla sonlanan bir süreçtir. Vatandaşın maliki olduğu kadastro parselinin mevkiine göre parseline en yakın olan binadan kuraya girerek hangi dairede oturacağı belirlenir. Kendisine en yakın binanın belirlenme işlemi ise insan eliyle yapılmaktadır. Bu durum hem hız hem de doğruluk anlamında süreci olumsuz etkilemektedir. Verileri otomatik olarak sınıflandırma yeteneğinden dolayı, mekânsal veri madenciliği tabanlı kümeleme büyük veri için oldukça önemlidir. Bu çalışma kapsamında insan faktörü ile yapılan bina belirleme işlemi veri madenciliği tabanlı mekânsal kümeleme yöntemleri olan K-Means, DBSCAN ve OPTICS algoritmaları kullanılarak otomatize hale getirilmiştir. Yapılan deneysel değerlendirmeler sonucunda OPTICS kümeleme algoritmasının en doğru sonucu verdiği saptanmıştır.