IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, vol.59, no.11, pp.4197-4206, 2012 (SCI-Expanded)
This paper presents the real-time implementation of a bi input-extended Kalman filter (EKF) (BI-EKF)-based estimator in order to overcome the simultaneous estimation problem of the variations in stator resistance R-s and rotor resistance R-r' aside from the load torque t(L) and all states required for the speed-sensorless control of induction motors (IMs) in the wide speed range. BI-EKF algorithm consists of a single EKF algorithm using consecutively two inputs based on two extended IM models developed for the simultaneous estimation of R-r' and R-s. Therefore, from the point of real-time implementation, it requires less memory than previous EKF-based studies exploiting two separate EKF algorithms for the same aim. By using the measured stator phase voltages and currents, the developed estimation algorithm is tested with real-time experiments under challenging variations of R-s, R-r', and t(L) in a wide speed range; the results obtained from BI-EKF reveal significant improvement in the all estimated states and parameters when compared with those of the single EKFs estimating only R-r' or R-s.