ADVANCED MATERIALS, 2025 (SCI-Expanded, Scopus)
The prevention of counterfeiting and the assurance of object authenticity require stochastic encoding schemes based on physically unclonable functions (PUFs). There is an urgent need for exceptionally large encoding capacities and multi-level responses within a molecularly defined, single-material system. Herein, a novel stochastic orientational encoding approach is demonstrated using a facile ambient-atmosphere solution processing of a molecular thin film based on the rod-shaped oligo(p-phenyleneethynylene) (OPE) pi-architecture. The nanoscopic film, derived from the small molecule 2EHO-CF3PyPE with donor, acceptor, and pi-spacer building units, is designed for energetically favorable uniaxial molecular assembly and crystal growth via directional multiple hydrogen-bonding motifs at the molecular termini and short C & horbar;H