Development of solar-driven charging station integrated with hydrogen as an energy storage option


ERDEMİR D., DİNCER İ.

Energy Conversion and Management, cilt.257, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 257
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1016/j.enconman.2022.115436
  • Dergi Adı: Energy Conversion and Management
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Applied Science & Technology Source, CAB Abstracts, Communication Abstracts, Computer & Applied Sciences, Environment Index, INSPEC, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Hydrogen, Charging station, Energy storage, Energy management, Fuel cell, Electric vehicle, Clean energy, RENEWABLE ENERGY, DESIGN, SYSTEM
  • Kayseri Üniversitesi Adresli: Hayır

Özet

© 2022 Elsevier LtdThis study deals with the development and assessment of a new charging station, which is driven by solar energy and integrated with hydrogen production, storage, and utilization systems. A thermodynamic analysis based on energy and exergy approaches is performed to analyze the system and assess its performance. The system works under two operational periods: solar-powered charging points for power output and hydrogen production during the daytime and power generation via hydrogen fuel cells during periods when solar energy is not adequate enough. The present work is, in this regard, unique and is conducted based on some parametric and case studies. Furthermore, it is observed that hydrogen is a promising fuel option and carbon-free energy storage medium. The energy needed for hydrogen storage process which covers both compression and cooling is relatively lower than the energy demand of the charging station. Thus, it is possible to develop a solar-driven off-grid charging station with the integration of hydrogen. The need for grid power reduces with the increase in the PV surface area. In order to achieve an off-grid power supply, the amounts of hydrogen required for the charging station capacities of 100, 200, 300, 400 and 500 kW are 51.8, 125.8, 234.1, 370.9 and 507.7 kg, respectively. In order to have grid-independent and dedicated charging stations at the capacities of 100, 200, 300, 400 and 500 kW, the total PV surface area is needed to be 2560 m2, 4860 m2, 6580 m2, 10790 m2 and 15575 m2, respectively.