Functionally Graded and Geometrically Modified Auxetic Re-Entrant Honeycombs: Experimental and Numerical Analysis


Demirbaş M. D., Ekrikaya S., Çalışkan U., Sevim C., Apalak M. K.

POLYMERS, vol.17, no.11, 2025 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 17 Issue: 11
  • Publication Date: 2025
  • Doi Number: 10.3390/polym17111547
  • Journal Name: POLYMERS
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Chemical Abstracts Core, Communication Abstracts, Compendex, Food Science & Technology Abstracts, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Kayseri University Affiliated: Yes

Abstract

Auxetic re-entrant (RE) unit cell-based honeycombs exhibit a negative Poisson's ratio (NPR) and possess a greater energy absorption capacity than conventional hexagonal honeycombs. The energy absorption capabilities of these structures can be further enhanced through design modifications. This study explores novel double-cylindrical-shell-based RE unit cell (REC) designs with negative Poisson's ratios (NPRs), and the impact of material variations on NPR is analyzed in detail. The REC structures have two distinct geometric configurations: narrow REC (REC-N) and wide REC (REC-W). To demonstrate that these new geometries exhibit NPR behavior, samples were produced using additive manufacturing (AM) with materials including polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), and functionally graded (FG) PLA-ABS composites. Compression tests were conducted on the samples, following ASTM-D695-15 standards, to determine the Poisson's ratios. The experimental results obtained were validated against numerical results for all material combinations. It is demonstrated that the NPR can vary by up to 20% with changes in the REC cell geometry design for the same material combination. It is stated that changes in the material composition can alter the NPR by up to 11%. Therefore, it is shown that both the REC cell design and material variations lead to significant changes in the NPR.