A LITERATURE REVIEW ABOUT EFFECTS of PHASE CHANGING MATERIALS on COMPRESSIVE STRENGTH and THERMAL CONDUCTIVITY of BUILDING COMPONENTS


Creative Commons License

Çelik A. İ., Kayabaşı R., Şener A.

Mühendislik Bilimleri ve Tasarım Dergisi, cilt.10, sa.4, ss.1495-1508, 2022 (Hakemli Dergi)

Özet

One of the important areas of Phase Changing Materials (PCM) is to increase the heat retention capacity of building components. Researches are carried out on the heat retention capacities of PCMs to store energy in building components and to ensure building temperature control. The use of PCM in building components has become an important tool for energy saving, since ensuring building temperature control in summer and winter conditions is a situation that requires continuity. This feature provided to the building component provides an improvement in the energy identity of the building. In general researches, the use of macro, micro encapsulated PCM decreases the heat conduction coefficient as it increases the heat retention capacity of the building components, but effects compressive strength positive or negative. However, when the capsule size used in micro capsule applications is reduced to 7 microns and below, it is seen that the strength increases, while the thermal conductivity coefficient continues to decrease. When the PCM capsule particle sizes used in the building components are reduced, it provides an improvement in the granulometry of the component, so a positive effect on strength is seen in the building components. As a result of this research, differences in compressive strength were observed depending on the macro, micro and nano dimensions and mixing ratios of the pcm addition. However, due to the continuous increase in the PCM ratio of the building component, the heat holding capacity of the building component increases and its thermal conductivity decreases.